НДЗ №3, 1 и 2 вариант, на двойном листочке, сдаем 13.02
+дорешиваем лист с заданиями ОГЭ №20 - анализ геометрических высказываний
+дорешиваем лист с заданиями ОГЭ №20 - анализ геометрических высказываний
Задание №20
1. Какие из следующих утверждений верны?
1) Около любого правильного многоугольника можно описать не
более одной окружности.
2) Центр окружности, описанной около треугольника со сторонами, равными
3, 4, 5, находится на стороне этого треугольника.
3) Центром окружности, описанной около квадрата, является точка пересечения
его диагоналей.
4) Около любого ромба можно описать окружность.
Если утверждений несколько, запишите их номера в порядке
возрастания.
2. Какие из следующих утверждений верны?
1) Если две стороны одного треугольника соответственно равны
двум сторонам другого треугольника, то такие треугольники равны.
2) Средняя линия трапеции параллельна её основаниям.
3) Длина гипотенузы прямоугольного треугольника меньше суммы
длин его катетов.
Если утверждений несколько, запишите их номера в порядке
возрастания.
3. Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние
накрест лежащие углы равны 90° , то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является
точка пересечения серединных перпендикуляров к сторонам треугольника.
4. Какое из следующих утверждений верно?
1) Любой прямоугольник можно вписать в окружность.
2) Все углы ромба равны.
3) Треугольник со сторонами 1, 2, 4 существует.
5. Какие из следующих утверждений верны?
1) Длина гипотенузы прямоугольного треугольника меньше
суммы длин его катетов.
2) В тупоугольном треугольнике все углы тупые.
3) Средняя линия трапеции равна полусумме её оснований.
Если утверждений несколько, запишите их номера в порядке
возрастания.
6. Какие из следующих утверждений верны?
1.Расстояние от точки, лежащей на окружности, до центра окружности равно
радиусу.
2.Площадь трапеции равна произведению основания трапеции на высоту.
3.Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов,
запятых и других дополнительных символов.
7. Укажите номера верных утверждений.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную
этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.
4) В любом параллелограмме диагонали равны.
8. Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им
стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными
прямыми и секущей, равны.
Если утверждений несколько, запишите их номера в порядке
возрастания.
9. Какое из следующих утверждений верно?
1) Диагонали параллелограмма равны.
2) Площадь ромба равна произведению его стороны на высоту,
проведённую к этой стороне.
3) Если две стороны и угол одного треугольника равны соответственно
двум сторонам и углу другого треугольника, то такие треугольники равны.
Если утверждений несколько, запишите их номера в порядке
возрастания.
10. Укажите номера верных утверждений.
1) Через любую точку проходит не менее одной прямой.
2) Если при пересечении двух прямых третьей прямой соответственные
углы равны 65°, то эти две прямые параллельны.
3) Если при пересечении двух прямых третьей прямой внутренние накрест
лежащие углы составляют в сумме 90°, то эти две прямые параллельны.
Если утверждений несколько, запишите их номера в порядке
возрастания.
11. Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника
лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна 180°.
12. Какие из следующих утверждений верны?
1) Один из углов треугольника всегда не превышает 60 градусов.
2) Диагонали трапеции пересекаются и делятся точкой пересечения
пополам.
3) Все диаметры окружности равны между собой.
Если утверждений несколько, запишите их номера в порядке
возрастания.
13. Какое из следующих утверждений верно?
1) Через точку, не лежащую на данной прямой, можно провести
прямую, перпендикулярную этой прямой.
2) Если стороны одного четырёхугольника соответственно равны сторонам
другого четырёхугольника, то такие четырёхугольники равны.
3) Смежные углы равны.
Если утверждений несколько, запишите их номера в порядке
возрастания.
14. Какие из следующих утверждений верны?
1) Треугольника со сторонами 1, 2, 4 не существует.
2) Смежные углы равны.
3) Все диаметры окружности равны между собой.
Если утверждений
несколько, запишите их номера в порядке возрастания .
15. Укажите номера верных утверждений.
1) Диаметр делит окружность на две равные дуги.
2) Параллелограмм имеет две оси симметрии.
3) Площадь треугольника равна его основанию, умноженному на высоту.
16. Какие из следующих утверждений верны?
1) Если расстояние между центрами двух окружностей равно сумме
их диаметров, то эти окружности касаются.
2) Вписанные углы окружности равны.
3) Если вписанный угол равен 30°, то дуга окружности, на которую
опирается этот угол, равна 60°.
4) Через любые четыре точки, не принадлежащие одной прямой, проходит
единственная окружность.
17. Укажите номера верных утверждений.
1) В любую равнобедренную трапецию можно вписать окружность.
2) Диагональ параллелограмма делит его углы пополам.
3) Площадь прямоугольного треугольника равна половине произведения
его катетов.
Если утверждений несколько, запишите их номера в порядке
возрастания.
18. Укажите номера верных утверждений.
1) Если угол равен 47°, то смежный с ним равен 153°.
2) Если две прямые перпендикулярны третьей прямой, то эти две прямые
параллельны.
3) Через любую точку проходит ровно одна прямая.
Если утверждений несколько, запишите их номера в порядке
возрастания.
19. Укажите номера верных утверждений.
1) Через точку, не лежащую на данной прямой, можно провести
прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.
4) Центр описанной около треугольника окружности всегда лежит внутри
этого треугольника.
Если утверждений несколько, запишите их номера в порядке
возрастания.
20. Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая
от концов отрезка.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм
является ромбом.
21. Укажите номера неверных утверждений.
1) При пересечении двух параллельных прямых третьей прямой
сумма накрест лежащих углов равна 180°.
2) Диагонали ромба перпендикулярны.
3) Центром окружности, описанной около треугольника, является точка
пересечения его биссектрис.
Если утверждений несколько, запишите их номера в порядке
возрастания.
22. Какие из следующих утверждений верны?
1) В треугольнике против меньшего угла лежит большая сторона.
2) Если один угол треугольника больше 120°, то два других его угла
меньше 30°.
3) Если все стороны треугольника меньше 1, то и все его высоты меньше
1.
4) Сумма острых углов прямоугольного треугольника не превосходит
90°.
23. Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого
треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является
его медианой.
24. Какие из следующих утверждений верны?
1) Треугольника со сторонами 1, 2, 4 не существует.
2) Сумма углов любого треугольника равна 360 градусам.
3) Серединные перпендикуляры к сторонам треугольника пересекаются
в центре его описанной окружности.
Если утверждений несколько, запишите их номера в порядке
возрастания.
25. Какие из следующих утверждений верны?
1) Если угол равен 45°, то вертикальный с ним угол равен 45°.
2) Любые две прямые имеют ровно одну общую точку.
3) Через любые три точки проходит ровно одна прямая.
4) Если расстояние от точки до прямой меньше 1, то и длина любой наклонной,
проведенной из данной точки к прямой, меньше 1.
26. Какие из следующих утверждений верны?
1) Через точку, не лежащую на данной прямой, можно провести прямую,
параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) В любом параллелограмме есть два равных угла.
В ответ запишите номера выбранных утверждений без пробелов, запятых и
других дополнительных символов.
27. Какое из следующих утверждений верно?
1) Точка касания двух окружностей равноудалена от центров этих
окружностей.
2) В параллелограмме есть два равных угла.
3) Площадь прямоугольного треугольника равна произведению длин
его катетов.
Если утверждений несколько, запишите их номера в порядке
возрастания.
28. Какое из следующих утверждений верно?
1. Все прямоугольные треугольники подобны.
2. Через заданную точку плоскости можно провести только одну прямую.
3. Диагонали ромба точкой пересечения делятся пополам.
В ответ запишите номер выбранного утверждения.
29. Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую,
параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
30. Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной
окружности.
Если утверждений
несколько, запишите их номера в порядке возрастания.